skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brandes, Jay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Blagodatksaya, Evgenia (Ed.)
    Roots of salt marsh grasses contribute to soil building but also affect decomposition by releasing bioavailable carbon exudates and oxygen. Disentangling exudate and oxygen effects on decomposition is difficult in the field but essential for marsh carbon models and predicting the impacts of global change disturbances. We tested how pulsed, simulated exudates affect soil metabolism under oxic and anoxic conditions, and whether carbon and oxygen availability facilitate mineralization of existing organic matter (i.e., priming). We conducted a laboratory experiment in flow-through reactors, adding carbon pulses weekly for 84 days and then following starvation under low carbon conditions. Oxygen consumption and sulfide production were inhibited under anoxic and oxic conditions and slowed by 21±10% and 55±8%, respectively, between 1- and 5- days following exudate pulses. Respiration rates immediately following and between pulses increased over time, suggesting that microbes capitalize on and may acclimate to patchy resources. Starvation caused oxygen consumption and sulfide production to fall 28% and 78% in oxic and anoxic treatments. Smaller decreases in oxygen consumption following pulses could suggest greater access to secondary carbon sources and that sulfate reducers were more reliant on exudates. Soil organic carbon was not the likely secondary source because porewater dissolved inorganic carbon 13C values did not change during transit through the reactors, despite a ~26‰ difference between the supplied seawater and marsh soil. Interpretation of oxygen consumption rates is complicated by non-respiratory oxidation of reduced inorganic compounds and possibly significant lithoautotrophy. Exudate pulses elicited rapid and ephemeral respiratory responses, particularly under anoxia, but non-respiratory oxidation of reduced compounds obscured the impact of oxygen availability in our experimental system. Despite this, greater aerobic respiration rates suggest that oxygen availability has more potential to regulate carbon mineralization in coastal wetlands than root exudates. 
    more » « less
  2. Abstract A portion of the charcoal and soot produced during combustion processes on land (e.g., wildfire, burning of fossil fuels) enters aquatic systems as dissolved black carbon (DBC). In terms of mass flux, rivers are the main identified source of DBC to the oceans. Since DBC is believed to be representative of the refractory carbon pool, constraining sources of marine DBC is key to understanding the long-term persistence of carbon in our global oceans. Here, we use compound-specific stable carbon isotopes (δ13C) to reveal that DBC in the oceans is ~6‰ enriched in13C compared to DBC exported by major rivers. This isotopic discrepancy indicates most riverine DBC is sequestered and/or rapidly degraded before it reaches the open ocean. Thus, we suggest that oceanic DBC does not predominantly originate from rivers and instead may be derived from another source with an isotopic signature similar to that of marine phytoplankton. 
    more » « less